12345>>
1.

The total number of distincts   $x \epsilon R$ for  which $\begin{bmatrix}x & x^{2} &1+x^{3} \\2x & 4x^{2}& 1+8x^{3} \\3x&9x^{2}&1+27x^{3} \end{bmatrix}=10 $  is


A) 2

B) 4

C) 1

D) 3



2.

Let $z=\frac{-1+\sqrt{3}i}{2}$ , where   $i=\sqrt{-1}$  , and  $ r,s \epsilon (1,2,3)$. Let  $P=\begin{bmatrix}(-z)^{r} & z^{2s} \\z^{2s} & z^{r} \end{bmatrix}$  and  I be the identity matrix of  order2.Then, the total number of ordered pairs (r,s) for which   $p^{2}=-I$ is


A) 0

B) 1

C) 2

D) 3



3.

Let  $\alpha,\beta\epsilon R$   be such that $\lim_{x \rightarrow0}\frac{x^{2}\sin (\beta x)}{\alpha x-\sin x}=1$   Then, 

 $6(\alpha+\beta)$  equals 


A) 8

B) 5

C) 6

D) 7



4.

The total  number of distincts  $x \epsilon  [0,1]$ for which   $\int_{0}^{x} \frac{t^{2}}{1+t^{4}}dt=2x-1$  is


A) 0

B) 1

C) 2

D) 3



5.

Let m be the smallesr positive integer such that the coefficient of  $x^{2}$  in the  expansion of $(1+x)^{2}+(1+x)^{3}+.....+(1+x)^{49}+(1+mx)^{50}$   is

   $\left(3n+1\right)^{51}C_{3}$  for some positive integer  n, Then the value of n is


A) 5

B) 7

C) 4

D) 8



12345>>